If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.75x^2=54
We move all terms to the left:
0.75x^2-(54)=0
a = 0.75; b = 0; c = -54;
Δ = b2-4ac
Δ = 02-4·0.75·(-54)
Δ = 162
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{162}=\sqrt{81*2}=\sqrt{81}*\sqrt{2}=9\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-9\sqrt{2}}{2*0.75}=\frac{0-9\sqrt{2}}{1.5} =-\frac{9\sqrt{2}}{1.5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+9\sqrt{2}}{2*0.75}=\frac{0+9\sqrt{2}}{1.5} =\frac{9\sqrt{2}}{1.5} $
| 25=d-8 | | (6x+10)=(10x+10) | | X/13+2x/3+x/4=10 | | X+(x-2)/3=1+(x-1)/2 | | (x+20)=(4x-5) | | 7x+2(5x+41)=71 | | (7x-4)=(3x+28) | | 5(x-1)^2+3=23 | | (8x+10)=(6x+30) | | 1/(z+2)-1/2=z/(z+2) | | 3/5t-13=1/5t-9 | | (7x+9)=(9x-23) | | -4(7r-4)=-32-4r | | 20/9=x^2/9 | | Y=0.5+4x | | 5(4m+4)=-m-1 | | (2x-26)=(7x+8) | | X+x-2/3=1+x-1/2 | | -7(6-7m)-8m=5m-6 | | -21/3k-31/3=-21/6 | | 9x+3(-3x+4)=-7 | | (4x-9)=(3x+29) | | x+7=-11+7x | | X+7/4=3x/5 | | (4x-9)=93x+29) | | -3/4n+12/5=321/40 | | 8n+1-4n=-6n+11 | | 2x^2*4-12=6 | | 2•3^x-4=54 | | (2x+6)=(x+9) | | 5-2a=3a-10 | | (6x-20)=(6x-4) |